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Abstract

This study was conducted to develop an alternative way of

transferring electricity across a continuously rotating joint, with

little wear and the potential for low electrical noise. The

problems with wires, slip rings, electromagnetic couplings, and

recently invented roll-rings are discussed. Flex-gears, an

improvement of roll-rings, are described. An entire class of flex-

gear devices is developed. Finally, the preferred flex-gear device

is optimized for maximum electrical contact and analyzed for

average mechanical power loss and maximum stress.

For a device diameter of six inches, the preferred device is

predicted to have a total electrical contact area of 0.066 square

inches. In the preferred device, a small amount of internal

sliding produces a 0.003 inch-pound torque that resists the

motion of the device.
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CHAPTER 1

INTRODUCTION

The transfer of electricity across continuously rotating joints is

especially important in robot joints and brush-type motors.

Traditionally, wires, brushes or slip rings, and electromagnetic

couplings accomplish this task. Wires commonly span robot

joints, restricting their motion and adding weight. Brushes or slip

rings are used in brush motors, incurring wear and causing

arcing. Electromagnetic couplings are used in brushless motors,

adding weight and creating significant power loss. Flex-gears are

developed herein, as an alternative to these methods of

transferring electricity across continuously rotating joints.

Wires, spanning robot joints, often transfer significant

electrical power for lower arm motors and end effectors. The

result is a heavy joint whose range of motion is limited by these



wires. Furthermore, these wires undergo fatigue that is difficult

to predict, thereby putting the reliability of the robot joint into

question. According to John Vranish at NASA, Goddard Space

Flight Center:

"The Flight Telerobotic Servicer (FTS) project

demonstrated, in space robotics, that cables dominate

wrist size, weight, and complexity; and present the risk of

snagging and fatiguing while limiting motion... The Alpha

joint on Space Station Freedom illustrates the need for

cableless power transfer across a revolute joint. The

Articulated Calibration Experiment (ACE) for Earth

Observation System (EOS) demonstrated the need for

cableless power and signals across slow speed

translational joints."

Brushes or slip rings were used or proposed instead of wires in

many of these applications.

Brushes or slip rings present a problem for electrical power

transfer, particularly in space applications. Without atmosphere,

especially moisture, brushes have no lubrication and wear out

quickly. The particles from wear are potential contaminants to

other parts of the spacecraft. These particles increase arcing

which further destroys the slip ring surface [Holm, 1967].

Furthermore, arcing generates debris that can short circuit

electrical components and damage sensitive optical instruments.

An electro-magnetic coupling, such as a transformer, can be

used to transfer electrical power. But, a transformer has a high
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weight to power ratio and incurs significant electrical loss.

Electromagnetic couplings are used in brushless motors to

circumvent the problems associated with brushes in brush type

motors. For this reason, brushless motors are predominantly

used in space applications. However, brushless motors are

incapable of exerting high torque at low speeds, as brush motors

can. High torque at low speed was necessary for NASA projects,

such as, Solar Max, COBE, XTE, EOS, Space Station Freedom, and

FFS.

1.1 Background

Severe problems, especially in space applications, are associated

with the traditional methods of transferring electricity across

continuously rotating joints. Better alternatives such as roll-rings

and flex-gears were conceived, previous to this thesis, to survive

a space vacuum environment.

1.1.1 Roll-rings

Roll-rings were developed by Sperry Corporation [1981] to

conduct electrical power across a continuously rotating joint with

little wear. The roll-ring device shown in Figure 1.1 employs one

or more flexible hollow planets to conduct electricity between

two concentrically rotating conductors called sun and ring [Porter,

1985]. The roll-ring device incurs much less wear than brushes

and slip rings. Each planet conducts up to one Ampere of current,

according to the inventor of roll-rings, Pete Jacobson.
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Outer ring

Flexible hollow
planets

Idler rollers

Figure 1.1: Roll-ring Device

The flexible planets of a roll-ring device eventually run into

one another by walking (a result of micro slip) or jerking out of

position. The result is extreme wear between the planets. One

solution has been to run a single planet per roll-ring device,

drastically reducing the current-carrying capability of the device.

Another solution has been to separate the planets with idler

rollers, as shown in Figure 1.1, or more complex caging schemes.

This solution increases the complexity of the device.

Furthermore, the addition of small parts prevents future

reduction in the size of the device.

1.1.2 Standard Gear Flex-gears

The flex-gear device, shown in Figure 1.2, was conceived by John

Vranish at NASA, Goddard Space Flight Center, as a planetary

gear device whose planets maintain their own position by gear

meshing. Referring to Figures 1.1 and 1.2, flex-gears differ from

roll-rings only by having gear teeth. Hollowed for additional
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flexibility, the planet gears are compressed in the annulus of

their sun and ring gears similarly to the planets of the roll-ring

device to maintain electrical contact.

Outer ring gear

Flexible hollow
planet gears

Figure 1.2: Flex-gear Device (gear teeth are not shown)

Standard gear planet gears, by having multiple tooth

contact, offer more regions of contact with their sun and ring

gears than the planets of a roll-ring device. This multiple tooth

contact is quantified by contact ratio, formally defined in Chapter

2. The contact ratio is simply the average number of teeth in

contact between mating gears, throughout gear meshing.

The contact ratio of a gear with a 20 ° pressure angle can

range from 1.0 to 1.97 [Cowie, 1961]. Since a contact ratio of 1.9

means an average of 1.9 teeth in contact with the mating gear,

planet gears of a flex-gear device have an average of 90% more

contact regions than the planets of a roll-ring device. Thus, a

flex-gear device has the potential for offering a higher current-

carrying capability than the roll-ring device. However, the
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number of contact regions alone does not determine current-

carrying capability. More important are the contact area and

pressure of those contact regions.

Increasing the electrical contact area and pressure of the

planets in a flex-gear (or roll-ring) device can be accomplished by

simply increasing the compression of the planet gear in the

annulus of the sun and outer ring gears. If excessively

compressed in the annulus, standard planet gears are subject to

severe wear and mechanical power loss. Yet, if insufficiently

compressed in the annulus, standard gear planet gears serve as

poor electrical conductors due to low contact area and pressure.

For these reasons, standard gear planet gears are judged to make

relatively poor conductors in a flex-gear device. A search for

other types of gears to conduct electricity in a flex-gear device is

warranted.

1.2 Objectives

The objective of this research is to design a (non-standard) flex-

gear device that can transfer sufficient current, while incurring

little wear. It is not surprising that standard gears are not well

suited for the transfer of electrical power, since they were

designed to transfer mechanical power. A new class of gears is

developed in this work to transfer electrical power. These gears

maintain robust electrical contact, while maintaining their own

position in a flex-gear device.
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The objectives for the design of the optimum flex-gear

device are as follows:

1. Design a flex-gear device with planets that maintain their

own position in the annulus of the sun and ring gears. By

maintaining their own position, no additional parts, such

as caging or idler wheels, are necessary to separate the

planets. Multiple planets can be used to increase the

current-carrying capability of the device without the

danger of planet collisions.

2. Maximize the contact area between the planet gears and

their sun and ring gears to further increase the current-

carrying capability of the flex-gear device.

3. Insure a contact pressure, between gears, in the order of

35,000 psi. This is the approximate contact pressure

between the planets and the sun and outer ring of the

roll-ring device, according to the inventor of roll-rings,

Pete Jacobson.

4. Minimize wear by minimizing sliding, especially on the

surfaces of electrical contact. According to Holm [1967],

wear is significantly increased between sliding surfaces if

electricity is flowing through the interface.

1.3 Organization of Thesis

In Chapter 2, various types of non-standard planet gears are

developed for the flex-gear device, according to the objectives of

Section 1.2. A promising non-standard gear, called the pitch-
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rolling-gear, is recommended for further study. Pitch-rolling-

gears are chosen as the preferred gears for the flex-gear device

at the end of Chapter 2. In Chapters 3 through 6, flex-gear

design and analysis is illustrated through a specific example of a

flex-gear device. An outer ring diameter of approximately six

inches is imposed on the example device, since this is a

reasonable size for a robot joint. Standard casting Beryllium

Copper alloy* is used for all the gears in the example device.

Recommended for electrical contacts, Be-Cu alloys also have

excellent spring characteristics necessary for flex-gears.

Furthermore, various Be-Cu alloys posses a higher strength than

some steels.

In Chapter 3, the optimal diameter of the planet gears are

determined by maximizing their contact area for the flow of

electricity. Two models are developed to accomplish the

optimization of planet size. A closed-form model employs the

Hertz contact theory to model the regions of contact and the

theory of ring deflection, as presented by Timoshenko [1936] to

model the deformation of each planet away from the contact

region. At the end of Chapter 3, the results of a finite element

model are compared to those of the closed-form model.

In Chapter 4, the tooth height (and corresponding tooth

thickness) of the planet gears is determined by maximizing the

duration of electrical contact of the planet gears with the sun and

ring gears. The optimization of planet contact employs the

* Since Beryllium Copperalloys are toxic, OSHA has specific requirements
regarding their machining and processing.
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technology of standard involute gears, as presented by Kimbrell

[1991]. The characteristics of pitch-rolling-gears are explained

and applied to flex-gear devices. The specifications for two

example devices are presented, from which a preferred device is

chosen.

Chapter 5 explains the kinematic and kinetic analyses of the

preferred device. From these analyses, the torque required to

drive the sun gear against sliding friction is estimated, and the

stresses within the gears are calculated. In Chapter 6, the major

contributions of this work are summarized and future work is

recommended.
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CHAPTER 2

DEVELOPMENT OF CONCEPT

In section 2.1, non-standard gears are developed for the flex-gear

device, in accordance with the objectives listed in Section 1.2.

The application of these non-standard gears to flex-gear devices

is discussed in Section 2.2. For clarity, the flexibility of the gears

will be ignored in the first section of this chapter, and discussed

in Section 2.2, entitled Configurations.

2.1 Gear Development

Roll-rings sustain robust electrical contact, but cannot maintain

their positions in their annulus without the help of idler rollers.

Standard gear flex-gears maintain their own position in their

annulus, but make poor electrical contact because of the low

contact pressure and excessive wear between teeth.
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2.1.1 Rolling-gears

Combining the advantages of both the roll-ring and the standard

gear flex-gear, the rolling-gear was conceived as shown in Figure

2.1. A rolling-gear is simply a roll-ring with gear teeth added to

prevent uncontrolled sliding. Roll-rings and standard gear flex-

gears each has only one type of contact surface. Roll-rings have

surfaces for electrical contact. Standard gear flex-gears have

tooth surfaces for gearing that are also employed for electrical

contact. Rolling-gears, however, have two entirely different

types of contact surfaces: one to transfer electricity and the other

to maintain the position of the gear, as shown in Figure 2.1.

The rolling contact surfaces are designed to transfer

electricity. At least one of the two mating rolling contact surfaces

is flexible and forced against its mating surface to produce

sufficient contact area and pressure for electrical flow. To

minimize wear, these surfaces are designed to roll rather than

slip, and are therefore called rolling contact surfaces. The second

type of contact surface maintains the position of the rolling-gear

in the annulus. These surfaces, called gearing surfaces, are

allowed to slide relative to each other, similar to the gearing

surfaces of standard gears. Nevertheless, these surfaces will not

wear severely if the contact pressure between them is low, as

expected. Most of the electricity is expected to be carried by the

rolling contact surfaces, since they are designed for low electrical

resistance with high contact pressure and area.
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If gear teeth are added to the planets, corresponding

valleys must be added to the ring and sun, and visa versa. Figure

2.1 shows a rolling-gear with arbitrarily chosen valley and gear

tooth shapes. The rolling-gear can slide somewhat freely

between the gear teeth. Like a roll-ring, the rolling-gear is held

in position mostly by the friction between the rolling contact

surfaces, rolling over the gear teeth without making contact.

Should slipping occur between the rolling contact surfaces by the

rolling-gear walking or jerking out of position, the gear teeth

reposition the rolling-gear.

PLANET

<e=n< v ,ey c°n'actsurfaces surfaces

spur ......._.(,-_ ___ -.-/'_ i

SUN or RING

Figure 2.1: A Rolling-gear

Upon repositioning, sliding occurs between both rolling and

gearing surfaces. Sliding between the rolling contact surfaces can

contribute to severe wear and mechanical power loss because of

high contact pressure and area. To diminish wear and mechanical

power loss, a search began for gear tooth and valley shapes that

would minimize sliding on the rolling contact surfaces. Candidate

gear tooth curves included simple shapes like those shown in

12



Figure 2.1 and those common to gear technology, such as cycloids

and involutes. A special application of involute curves reduces

the sliding on the rolling contact surfaces to zerot. This

application will be explained in the following subsection. A

similar application of any conjugate gear pair reduces sliding

between the rolling contact surfaces to zero. A conjugate gear

pair is any pair of gear curves that exhibit conjugate action, as

defined in the following subsection. Nevertheless, involute gear

curves are used, henceforth, for the gearing surfaces of roiling-

gears. This special configuration of rolling-gears, called pitch-

rolling-gears, is explained in the following subsection.

2.1.2 Pitch-rolling-gears

Since the development of pitch-rolling-gears requires an

understanding of involute gear technology, a brief review is

presented. For a more thorough understanding of involute gear

technology, the reader is referred to Shigley and Mischke [1989]

or Kimbrell [1991].

Meshing between two standard involute gears is shown in

Figure 2.2a. Initial gear contact is made at point A. A

combination of sliding and rolling occurs between the mating

teeth as the point of instantaneous contact follows the pressure

t Contribution of professor Lung-Wen Tsai.
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(b) Sliding between C,-ea_g Surfaces

Figure 2.2: Standard Involute Gear Action
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line until separation at point B. The section of the pressure line

between points A and B is called the line of action, and the angle

is referred to as the angle of action. The dedendum circle

marks the roots of the gear teeth, while the addendum circle

marks their tips. The base circle is tangent to the pressure line

and marks the diameter from which involutes are drawn to form

gear teeth. The pitch circle is defined as the circle that passes

through the pitch point P.

The relative velocity between mating gear teeth, at their

point of instantaneous contact, is a measure of sliding. In Figure

2.2b, the relative velocity V r is zero at the pitch point P,

indicating pure rolling at that point. This means that an involute

gear rotates as if it were rolling on the imaginary pitch circle of

its mating gear, thereby transmitting a constant angular velocity.

The transmission of constant angular velocity is characteristic of

involute gears and is referred to as conjugate action. By

exploiting conjugate action, sliding can be eliminated on the

rolling contact surfaces of pitch-rolling-gears.

The exploitation of conjugate action is implemented by the

formation of special teeth, as shown in Figure 2.3. A dedendum

gear tooth is formed by cutting off the addendum of a standard

gear tooth. An addendum gear tooth is formed by filling in its

dedendum. Upon meshing, the cut-off portions of a dedendum

gear roll on the filled-in portions of an addendum gear to produce

rolling contact. These surfaces are called rolling contact surfaces

like those of a rolling-gear. Since these rolling

15
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Figure 2.3' Pitch-rolling-gear Teeth

16



contact surfaces lay on the pitch circles of gears, this type of gear

is called a pitch-rolling-gear. Meanwhile, the contact between the

gearing surfaces maintains conjugate action to ensure pure rolling

on the rolling contact surfaces.

In Figure 2.4a, the dedendum gear teeth have been

widened and the addendum gear teeth slimmed to maximize the

duration of contact between the rolling contact surfaces. The

leftmost addendum gear tooth makes initial contact with the

dedendum gear at point A. Sliding and rolling occurs between

the mating teeth along the line of action until separation at the

pitch point P, similar to standard gear meshing. Figure 2.4b

shows the sliding, or relative velocity Vr, between the gearing

surfaces of mating pitch-rolling-gears. Notice how this compares

to the sliding or relative velocity of standard gears in Figure 2.2b.

To further increase the duration of contact between the

rolling contact surfaces, the pitch-rolling-gear teeth are spaced

far apart. Tooth spacing is indicated by contact ratio. The contact

ratio is defined in Subsection 1.1.2 as the average number of

teeth, in contact, between mating gears. Formally, the contact

ratio cr is defined as

cr= q (2.1)
P

where p is the pitch or distance between tooth centers along the

pitch circle, and q is the arc of tooth action or the arc length along

the pitch circle in the angle of tooth action a. Standard
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gear teeth are spaced more closely so that adjacent teeth share

mechanical loads. The resulting contact ratios of standard gears

are commonly between 1.2 and 1.7. Since pitch-rolling-gears are

designed to carry little mechanical load, a contact ratio near 1.0 is

used to maximize tooth spacing. Gear tooth size and spacing will

be further studied in chapter 4 to maximize the duration of

contact between the rolling contact surfaces of pitch-rolling-

gears.

2.2 Configuration

To apply pitch-rolling-gears to the flex-gear device, shown in

Figure 1.2, choices of flexibility (flexible or non-flexible) and gear

type (addendum or dedendum) must be made for the sun, ring,

and planet gears.

2.2.1 Flexibility

Until now, it has been assumed that the planet of a flex-gear

device was the only flexible element, and hence, was itself called

the flex-gear. But, in fact, any one or more of the gears in the

planetary gear device can be flexible.

The sun and ring gears will be attached, respectively, to the

inside (shaft) and outside (housing) of a revolute joint. These

attachments would be significantly more complex and space

consuming if the sun or ring gears were also flexible. Conversely,

the planet gears are free from attachment. They are constrained

in the radial direction by the sun and ring gears and in the axial
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direction by electrically insulating barriers, such as ceramic

plates. Furthermore, the independence of flexible planets from

each other, and from other parts, improves the reliability of the

device. If one flexible planet is flawed, the device may still be

effective.

Finally, flexible planets have the potential for ease of

manufacture. For example, tubular shapes, like hollow planets,

can be made by extrusion or tube shaping. For these reasons,

flexible planets with non-flexible or solid sun and outer ring

gears are chosen for the preferred configuration of the flex-gear

device. Accordingly, the flexible planets, themselves, are

sometimes referred to as flex-gears, and the device is referred to

as a flex-gear device.

Having chosen the configuration of the flex-gear device in

terms of flexibility, the choice of gear type remains to be made.

In the next subsection, the choice of gear type is discussed.

2.2.2 Gear Type

Planet gears, which roll in the annulus of their sun and ring gears,

can be addendum or dedendum gears. Since addendum gears

mesh only with dedendum gears, the choice of the planet gear

type determines the mating gear type for the sun and ring gears.

As shown in Figure 2.3, addendum gear teeth lie outside the pitch

circle, while dedendum gear teeth lie inside. So, for equal pitch

diameters, a dedendum gear is smaller than an addendum gear.

This allows more dedendum gears to be packed in the same size
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annulus, providing more contact area for the flow of electricity.

However, for a planet diameter twenty times the tooth height,

this effect is small. Tooth height is discussed in Section 4.1.

A flexible addendum gear resembles a ring with spurs,

while a flexible dedendum gear resembles a corrugated ring.

Because of its shape, a flexible addendum gear is thought to be

easier to design, test, and prototype than a flexible dedendum

gear. Both offer the same duration of electrical contact between

gear teeth. Hence, flexible addendum planet gears and solid

dedendum sun and ring gears constitute the preferred

configuration of the flex-gear device.

The design of this configuration is centered on the design of

the flexible addendum planet. The size and gear tooth

specifications of the solid dedendum sun and ring gears are

determined by the size, the extent of compression, and the gear

tooth specifications of the planet. The size and extent of

compression of the planet gear are discussed in Chapter 3. The

gear teeth of the planet gear are considered in Chapter 4.
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CHAPTER 3

DESIGN OF A FLEXIBLE PLANET

To maximize the current-carrying capability of the preferred

configuration of a flex-gear device, the contact between the

rolling contact surfaces of the gears must be optimized. A flexible

addendum planet gear is simply a ring with gear teeth. To

investigate its rolling surface contact with the sun and ring gears,

gear teeth will be ignored, in this chapter. The resulting flexible

planet will be sized, so that the flex-gear device attains maximum

current-carrying capability. To model current-carrying capability

of a flexible planet compressed in the annulus of its sun and ring,

the physics of contact must be studied. Several types of electrical

contacts are discussed in the following paragraphs.

The current-carrying capability of the contact between a

brush and a metal ring may be established by its cross sectional
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area and contact pressure [Still, 1916]. However, electricity only

flows between the brush and the ring through contact of surface

asperities. The area of asperity contact is often one thousand

times less than the cross sectional area of the brush [Holm, 1967].

As a result, the average contact pressure of the asperities is one

thousand times higher than the contact pressure calculated as if

the entire brush were in contact. The phenomenon of asperity

contact is theoretically true of any contact, and even more so for

brush contact since the contact pressure is typically as low as 1 or

2 pounds per square inch of the brush cross section [Still, 1916].

Unlike that of a brush, the contact between two spheres

incurs significant contact pressure. For this case, Holm [1967]

takes the electrical or asperity contact area as the entire contact

area, which is predicted by the Hertz contact theory.

Finally, a thin ring makes contact as shown in Figure 3.1a.

A thinner ring would globally flatten as shown in Figure 3.1b,

substantially increasing contact area while decreasing contact

pressure. Because of low contact pressure, the contact of a

thinner ring is not expected to have a higher current carrying

capability than that of a thicker ring.

Consider the flex-gear device shown in Figure 3.2. The

compression or deflection of the planet, shown in Figure 3.2a, is

exaggerated. The uncompressed planet is shown in Figure 3.2b,
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where the radius R and thickness c are defined. Applying a

diametrical force W in the plane of the page produces the planet

deflection S. The axial depth of the planet comes out of the page

perpendicularly and is denoted by d (not shown).

From Section 1.2, the objective of the optimization of planet

size is to maximize the contact area for the flow of electricity.

Contact areas (between the planet and its sun and outer ring

gears), as well as the planet deflection, are functions of the

independent parameters, defined as the planet thickness c, radius

R, compressive force IV, and the axial depth d. Axial depth has no

effect on the optimization of planet size, since contact area varies

linearly with d. For the example device, introduced in Section

1.3, an axial depth of 0.375 inches is used, and restrictions are

imposed on the planet deflection 8, compressive force W, and

thickness c. The restriction imposed on planet deflection is

discussed with the results of the optimization in Subsection 3.1.4.

The compressive force W is chosen sufficiently low to limit

wear and mechanical power loss due to friction. Frictional forces

arise from the possible sliding between the rolling contact

surfaces of the planet gear and the sun and ring gears. Still

[1916] recommends that brushes in electric motors have a

pressure of 1 or 2 pounds per square inch of the brush. This

pressure produces a 1 to 2 pound compressive force on a one inch

cross section brush. Since the sliding on the rolling contact

surfaces of a flex-gear is much less than that of a brush, imposing

a similar compressive force is conservative, in terms of limiting



wear and power loss. Hence, a compressive load of 3 pounds-

force is imposed for the optimization of planet size of the example

device.

A minimum planet thickness c is imposed to prevent

excessive tooth deflection. Tooth deflection of a planet gear is

exaggerated in Figure 3.3. The deflection of the foundation of a

standard gear tooth can be found in numerous publications [such

as Nakada and Utagawa, 1956]. However, none of the

investigated publications take into account the radial thickness of

a hollow gear or the thickness of a rack. The search for the

minimum planet thickness to adequately limit tooth deflection is

recommended for future study in Section 6.2. For the

optimization of planet size in the example device, intuitively a

minimum planet thickness of 0.04 inches is imposed.

The current-carrying capability of the device is restricted

more by the contact between the planets and sun than the

contact between the planets and the outer ring. This is

intuitively evident, since contact area depends on the radii of

curvatures at contact. As inferred from Figure 3.2, the radius of

curvature of the sun is always less than that of the outer ring.

The planet contact area is defined as the contact area between a

planet and the sun, while the total contact area is defined as that

of all the planets. Figure 3.4 shows part of a planet that is in

contact with the sun, where the distance 2b denotes the contact

length.

27



PLANET
GF.AR

Pitch circle

Gear force
Location of rolling contact

Figure 3.3" Tooth Deflection

28



Planet

''_ 2b _'-'C" 1

Sun

Figure 3.4: The Contact Region

29



Two models are used to determine the planet contact area

and deflection. In Section 3.1, a closed-form model is developed,

and its results are presented. In Section 3.2, a finite element

model is developed, and its results are compared to those of the

closed-form model.

3.1 Closed-form Model

Previously in this chapter, the electrical contact area between two

spheres was said to be predicted by the Hertz contact theory

because of high contact pressure. Here, it is further assumed that

the electrical contact area between a flexible planet and its sun

and outer rings also follows the Hertz contact theory because of

high contact pressure. Such a planet is shown in Figure 3.1a with

an exaggerated Hertzian pressure distribution. Hertz contact is a

close approximation as long as the flexible planet does not

globally flatten like the thinner ring shown in Figure 3.lb.

The Hertz contact theory was derived for two solid semi-

infinite bodies in contact. Additional deformation of the planet,

due to its hollowness, must be considered separately. Subsection

3.1.2 describes the deformation of the planet, which is referred to

as global deformation. Subsection 3.1.3 describes the

deformation of the contact region between the sun and the

planet, which is referred to as local deformation.
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3.1.1 Geometry

For geometric relationships, the planet deflection S is assumed to

be much less than the planet radius R, as shown in Figure 3.2b.

Hence, the planets approximately maintain their circular shape,

and the device radii are related by

R 3 =R_ +2R (3.1)

For positive values of R1 and an R 3 of approximately 3 inches (as

given in Section 1.3 for the example device), the planet radius R

can range from zero to 1.5 inches.

The n.umber of planets that can fit in the annulus is a

function of their radii R. As planet radius increases, the

maximum possible number of planets n decreases. As shown in

Figure 3.5, the angle that half of each planet consumes in the

annulus is given by,

?'=arcsin( R]R,+R (3.2)

By equating the angles of all the planets to 2n, the maximum

number of planets can be found:

27'n = 2/r (3.3)

Substituting Equation (3.2) into (3.3) and solving for n, yields
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n = (3.4a)

_.R_+R)

Given R 3 equals 3 inches, this equation becomes

(3.4b)

Equation (3.4b) is plotted in Figure 3.6 for realistic values of R.

3.1.2 Global Deformation

The total planet deflection 8, shown in Figure 3.2b, is the sum of

the ring (or global) deformation and contact (or local)

deformation. The global deformation of the planet is modeled by

a ring diametrically compressed by two opposing point loads.

The local deformation of the planet is modeled by the Hertz

contact theory.

The global planet deflection _G is given by Timoshenko

[1936] as a function of diametrical force W,

2WR3 ( (3.5)

where E is the elastic modulus and I is the area moment of inertia

of the planet cross section about the x-x axis, as shown in Figure

3.7 (1=d.c3/12). As specified in Section 1.3, standard casting

beryllium-copper alloy is used for the example flex-gear device.
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According to the American Society for Metals [1978], the

mechanical properties of standard casting beryllium-copper

include E=18.5x106 psi and v=0.3.

The curvature of the planet at the contact region affects the

local deformation, which determines the contact area and local

planet deflection (see Equation (3.12)). Timoshenko [1936]

describes the curvature of a diametrically loaded ring as a

function of O:

(3.6)

where v(O)is the radial deflection of the ring, and is given by,

WR 3 ( 1
v(O) + --0.sin4 0+c_401 (3.7)

and s is the distance along the circumference from the horizontal

of the planet, as shown in Figure 3.7. Substituting s=OR into

Equation (3.6) and simplifying, yields

r(O) = -- + v(O) +
R

(3.8)

Substituting the second derivative of the radial deflection with

respect to e into Equation (3.8), the curvature at the contact

region (0= _/_2) is found. The radius of curvature p is defined as

the inverse of curvature rat the contact region:
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1 1
- (3.9)

P = --xJo=_ 1 R W
R zEI

The radius of curvature p is used in the next subsection to find

the deformation local to the contact region.

3.1.3 Local Deformation

As shown in Figure 3.4, the semi-width contact length b is

defined as one half of the length of contact along the

circumference of the planet. By the Hertz contact theory, the

semi-width contact length between the sun and planet is given

by

b=. 2-_ -A (3.10a)
VJrd

where A is given by,

(1-v_ z+l-vzz 1 (1-v_+l-v_l

A=_, E, E2 ) k E, Ez )
I 1 = 1 1 (3.10b)

+ +
2R, 2p 2(R3-2R ) 2p

where v is Poisson's ratio, and the subscripts 1 and 2 refer to the

sun and planet, respectively.

The contact area between each planet and the sun is called

the planet contact area and is given by
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=2bd (3.11a)

The contact area between all the planets and the sun is called the

total contact area and is given by

A, =n&. (3.1 lb)

Contact area is used in the next section to determine optimal

planet size.

The local planet deflection 8c is found from the Hertz

contact theory [Stolarski, 1990].

2W(1- v 2 + 1] (3.12)

Comparing Equations (3.12) and (3.5), the local planet deflection

8 L is much less than the global planet deflection 8 G (for a thin

ring, which is defined by a ring, whose radius is over ten times its

radial thickness). Because the optimum planet is assumed to be a

thin ring, the local planet deflection 8L is neglected. Hence, the

total planet deflection 8is given by the global planet deflection 8 G,

in Equation (3.5).

3.1.4 Optimization

The planet contact area Ai, defined in Equation (3.11), is a

function of the planet thickness c and radius R, for a given
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compressive force W and axial length d. This function is plotted

in Figure 3.8. The planet contact area initially increases with

increasing planet radius R, because the decreasing planet

curvature improves contact. Further increasing the planet radius

decreases the planet contact area, because the decreasing sun

curvature degrades contact. Decreasing the planet thickness c

slightly increases the planet contact area by further decreasing

the curvature of the planet at contact. However, as can be seen

from Figure 3.8, the effect of planet thickness on contact area is

small.

The total contact area At, as defined in Equation (3.11b), is

plotted with respect to planet radius R, in Figure 3.9. The shape

of this curve is very similar to the shape of the curve for the

number of planets in Figure 3.6, but not to the shape of the curve

for the planet contact area, in Figure 3.8. This indicates that the

number of planets plays a dominant role in the determination of

total contact area. Hence, the maximum contact area follows the

maximum number of planets. The number of planets is increased

simply by decreasing the planet radius. However, decreasing

planet radius also decreases planet deflection, which has a

minimum determined by machining tolerances.

The effect of machining errors on planet deflection can be

seen from the equation of planet deflection:

6= (R,-R,)-2R (3.13)
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where R 1 and R 3 are the sun and outer ring gear radii,

respectively. By Equation (3.13), a unilateral machining tolerance

of 0.001 inches on all gear radii allows, at most, a variance of

planet deflection of 0.004 inches. Requiring at least some contact

at all times, the smallest planet deflection is zero and the largest,

defined as the nominal deflection, is 0.004 inches. To insure

contact at all times, the minimum nominal deflection equals the

variance of the planet deflection. For the example device,

unilateral tolerances of 0.001 inches are used, yielding a

minimum nominal deflection of 0.004 inches.

Figure 3.10 shows the deflection 8 as a function of the

radius R and thickness c, for a compressive force of W=3 lbf and

axial depth of d=0.375 inches. The minimum planet deflection,

set forth by machining tolerances, is indicated in Figure 3.10 by

the horizontal line at 8=0.004". The smallest planet radius, which

yields the largest total contact area, occurs at the minimum

planet deflection and the smallest recommended planet thickness

c=0.04". The resulting planet radius of 0.7 inches yields a planet

contact area of 0.00073 square inches, by Figure 3.8, and a

maximum number of 9 planet gears, by Figure 3.6. The product

of these values yields a total contact area of 0.0066 square

inches, as alternatively taken from Figure 3.9.

The closed-form model of the optimization of planet gear

size is compared to a finite element model in the following

section.
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3.2 Finite Element Model

The finite element model is shown in Figure 3.11. The

compressive force W is applied as a point load far from the

contact region, as shown in Figure 3.11a. Only the contact region

between the sun and the planet was modeled, since this contact

limits the current-carrying capability of the device.

To model the sun and planet, 4-node plane strain

quadrilateral elements were used. Figure 3.11b shows how gap

elements were used to model the contact region. Gap elements

and their ability to model this contact problem is discussed in the

following subsection.

3.2.1 Contact Modeling

The contact area is allowed to increase non-linearly with the

compressive force. The finite element package ABAQUS does this

by applying the compressive force incrementally. Each gap

element has no effect on the model unless the nodes that define

its endpoints pass each other in the vertical direction. If this

occurs, the two nodes are constrained together in that direction.

Once the entire compressive force has been applied, the closed

gap elements indicate the contact area. The distance between the

closed gap elements that are farthest apart is twice the semi-

width contact length. This times the axial length of the planet d

equals the contact area.

Gap elements are placed between the planet and sun, as

shown in Figure 3.11, inside the suspected contact region. This
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region spans approximately three times the contact distance that

is predicted by the closed-form solution.

To build confidence in the use of gap elements to model a

contact region, the solution of contact area of a finite element

model with gap elements is compared to that of the

corresponding Hertz model. Two solid cylinder fragments in

compression, as shown in Figure 3.12, were modeled by finite

elements. The solutions of contact area and y-normal stress along

the x and y axes are compared to the Hertz solutions in Figures

3.13a and b, respectively. Overall, the finite element solution

agrees with the Hertz solution. However, the contact area of the

finite element solution is 12% less than the Hertz solution.

The stress along the y-axis matches the Hertz solution more

closely than at contact. This is because the points along the y-

axis are further from the contact area, where reaction forces

occur. The finite element results along the y-axis deviate slightly

from the Hertz solution near the contact point for the same

reason. Increasing the density of the gap and quadrilateral

elements is expected to yield results that agree with the Hertz

contact theory more closely.

The agreement of the finite element solution with the Hertz

contact theory builds confidence in the modeling of the contact

region by gap elements. To apply gap element modeling to the

contact between a flexible planet and its sun, the proper density

of the gap and quadrilateral elements are determined through

refinements of the gap and quadrilateral meshes.
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3.2.2 Mesh Refinements

To insure a suitable density of gap and quadrilateral elements for

model accuracy, three mesh refinements were performed. The

first was performed on the pinned-ring model shown in Figure

3.14. This suggested a suitable quadrilateral mesh density in the

planet to accurately predict its global deflection. The second and

third mesh refinements were performed on the planet model

shown in Figure 3.11. The second refinement indicated a

sufficient density of gap elements to accurately predict the

contact area. With the density of gap elements determined in the

second mesh refinement, a final mesh refinement was performed

on the planet model to insure that the planet mesh from the first

refinement was sufficiently dense to accurately predict the

deflection of the planet (as opposed to the pinned ring used in the

first mesh refinement). Also checked in the final mesh

refinement was the effect of the planet mesh on the solution of

contact area.

The results of the first mesh refinement, performed on the

pinned ring, are shown in Figure 3.15. There is little difference in

the solution of deflection, especially between the 300 and 480

element meshes. Either mesh is acceptable for an accurate

solution of diametrical deflection. However, the 300 element

mesh takes significantly less time to run than the 480 element

mesh, and is therefore used initially in the planet model.
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The deflection of the pinned ring model is simply the global

deflection of the planet, which is predicted by Equation (3.5). The

solution of global deflection by this equation is shown in Figure

3.15. The finite element solutions, given in this figure, are about

16% less than this.

The second mesh refinement compares the solution of

contact area for three different densities of gap elements. The

higher the density of gap elements, the more accurate the

solution of contact area is expected to be. Figure 3.16 shows the

solutions of contact area for each of the gap element densities. As

the number of gap elements increases, the model appears to

asymptotically approach a specific solution. A density of 27 gap

elements in the contact region is gauged to predict this solution

with sufficient accuracy.

After adding 27 gap elements to the planet model, a final

mesh refinement was performed to insure that the 300-element

planet mesh, determined by the first mesh refinement, maintains

an accurate prediction of the planet deflection and contact area.

The solution of contact area is identical for all the tested planet

meshes. Figure 3.17 shows that planet deflection changes very

little with an increasing number of planet elements. There is

little difference between the results of especially the 300 and

400 element meshes. As in the first mesh refinement, the 300

element mesh takes considerably less time to run. To curb the

time to complete the optimization without much loss of

49



6"

<,

O
r.j

0.8 "

0.6'

0.4

0.2

0.0

0.68

iiii;iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!iiiiii!i!i!::iiii!iiii:

i!iiii!!iiii!iiii!iiiiiiiiiiiili!iiiiiiiiiiiiiii!iiiiiiiiiiiiiiii!iiiiiiiii

_:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:!:i:i:i:i:i:i:!:!:i:i:_:_:!:i:i:

!i!i!_i!i:!::_i:!i!_:!_!_:ii::ii::iiiii!ii_iii!!iiiiii!iii!i_i:i

0.56
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!iiiii!iiiiiiii_i__
:.:.:.:+:.:.:<.:.:.:.:.:.:.:.:.;.:,:.x.:.:.:.:.:.:.:-:.:,::<<

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

iiiiiiiiiiiiiiiiiiiiiii:iiiiiiiiiiiiiiiiiiiiiiii!iiiii!iiiii!iil::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
.:.:.:,:,:,:.:.:.:.;.:.:.:.:.:,:.:.:,:.:.:.:.:.:+:,:+:.:+:,:+

iiiiiiiiiii!iiiiiiiiiiiiiiiiiii!i!iiiiiiiiiiiiiiiiiiiiiiiiiiiii'i
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
i!!ii_!?!iiii:i!ili:iii!;?:::i!ii_i:ii!!i!ii_iiiii_iiiiii_ii:??
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::.
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:: :.:+:+;<.:,:.;.:.>:.:.:.:.:.:,:.:,:.:.:.:.:.:,:.:.:.:.:

iiiiiiiiiiiiiii!iil}iiiiil}iiiiiii!iiiiiii:iiiiiiiiiiiiiiil;i}iiiiiiii
?iiiiiiiiiiiiiiiiili!iii!iiiii!i}iii!i!iii!iiiiiiiiii;ii!i!iiiiiiii
iii::!i!:,!::i}::!il;}iii!i!ii::!i!::iiiii::i::i:,iii:::::i_i::::i:

0.52

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::

i   ii i::!;i:i!ili!iiii!ii!iiiii! :ilili;!iiiiiiiiiiiii!i!!!!ii'i!!!!!!ii
:::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

'::i'ii:ii_i:i;i:i_iil;iii!i!i!iii!iiiii!iii;iiiii_i!i_iii_i_i_!_i_i:i

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
===============================================================

iiiiiii!!iiiiiiii!iiiiiiiiiiiiiiiiiii!iiiiiiiii}iiiiiiiiiiiii!!iiii!iiiiiiii
ii?iii!ilil}iiiiiiiiiili!iiiiiiiiiliiiiiiiiiiiiiiiiiiiiiiiiililiiiiiiiiiiiiii
i i i ! i i;i ili!i!iiiiiiiiiiiiili i!ilili!iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 11 27

Number of Gap Elements

(in the expected region of contact)

Figure 3.16: Gap Element Mesh Refinement

12

E

°lII

t)
©

10
9.90

ii::ii::!i!!!ii!ii!!i!ii?!iii!i:iiiiiiii_iii!ii!!i_:i!
:i:i:ii:?:2:i:i:i:!:!:i:i:i:i:i:i:_:!:!:i:i:i:i:_:i:i:!:i
:::::::::::::::::::::::::::::::::::::::::::::::

:::::::::::::::::::::::::::::::::::::::::::::::::::::::

i_iii;iiiiiiiii!iiiiil;iiiiiiiiiiiiiiii!iiiiiiiiiiiiiiiii!i
::::::::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::::::::::::::::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::
iS[:ii:i:i:i:_:i:i:i:i:i:i:i:i:i:i:i:!:i:i:?:i:_:i:i?i

:;_iiiiiii_;iiiiii!i!iiiiiiiiiiiiiiii;iiiiiil;_!ii_iii_i_i
:::::::::::::::::::::::::::::::::::::::::::
::::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::

 ii !ii iiiiiiiii!ii!!ilili!iiiiiiiiiii!iiiiiii ii!iii! i i
:: ::::::::::::::::::::::::::::::::::::::::::::::::::::::

ii:i:i?i_!ii!i!i!!!i!!_i!i!!_i!!_!!ili!iii!_i_i_i:i:i:

iiiiiiiiiiiiiiiiiiii!ii!iiiii!i!i!iiiiiii!iiiii!ii!iiiii:,

10.20
: .>:+:+: ::::::::::::::::::::::::::::::::::::
=====================================================

=======================================================
:ilii!!i!!!:i_!!!i:!!ii!_i!:?!i!?ii!iiiiiiii:i_ii
:i:._i_ii!_i:::,_i_i:ii_!i!ii::i::!i_!i::!ii::!::i!i:

: ;.:.:+;+;.:.:-;,:,:.:,:+:.:,:.:.:,:.:.:,:.:.::

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
!!!i!!!i!?!!!i!i!!!!!i!i!i_?!?_!_!!i!i_:i!:iii!_ii[:

 ,,i!i',iiiii!iiii: ili!i',iiiii',i!iii',iiiii ,i!i!iiiii  
:i:i:i=i:_:iSS=2=i:i:i:i:i:2:i:i:i=[:i:i=iSi:2=i=2
:::::::::::::::::::::::::::::::::::::::::::::::::::::::

ii::iiiii!!ii' i!i!iiiiiiiii':iiiiiiiiiii!iiiii!iiiiiiii:

??i_'_ii;_:',ii_,_iiiil;i:ili;_,!iiiiiiii_,ii!ii_ii;i;::

,::i!ililiiiiii!iiiiiiiii;iii;iiiiiiiiiiiiiii!!ii;i;i
:::::::::::::::::::::::::::::::::::::::::::::::::::::::
: :::::::::::::::::::::::::::::::::::::::::::

: :.:::::.::::::::::::::::::::::::::::::::::::::::

::::::::::::::::::::::::::::::::::::::::::::
: :::::::::::::::::::::::::::::::::::::::::::::: :
: :::::::::::::::::::::::::::::::::::::::::::::::::::
::::::::::::::::::::::::::::::::::1

200 200

10.42 10.49

,i,lii!ii!!i!iii i!i i !!i!iiiii!!iiiiiiiiiiiiiiiiiiii ii! 
::::::::::::::::::::::::::::::::::::::::::::::::::::::

iiiii!iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

::.:.:.:,:.:+:.:,:.:.:.;.:.:.:+:.:+:.:.:.:<<:

:::::::::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::
::.:.:.:.:.:.:.:.:,:+:+:.:.:.:.:.:+:.:.:.:,r.:.:.

:::::::::::::::::::::::::::::::::::::::::::::::::::::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::

:::::::::::::::::::::::::::::::::::::::::::::::::::::::i: i:ii::iii:i!ii!!!i:iii_i:[!i:iiii!i_::i! :::::::::::::::::::::::::::::::::::::::::::::::::

!_!i!ii!i!i!i;iii!i!iiiiiiiiiiiiiiiiiiiiiiiii;!iiiii!ii;_•
i:i:?ii i ::?::._.!::::_.?:::!:.ii:_._: :::::::::::::::::::::::::::::::::::::::::::::::::::::

iiiiiiii_iiiiiiiiiiiiiiiliiiiiililiiiiiiiii_ii!iiiiii...................................................! :_:i_!:!:!_::!:_i_ililili?i_i_ili!iii!iii:i!i!ii!ill

• "''"""""'"' : i!!:._:i:_:!_.::!i!i:!i::!!!!i?i:ii!:!!!:!i:
iiiiiili??_i_:_:i;i:_:_:i:_:_:_i_:?:_:??: i i : ::::::::::::::::::::::::::::::::::::::::::::::

300 400

:::::::::::::::::::::::::::::::::::::::: : .:

:-:+;,:.:.:,:.:,:.:.:.:.:.:.: : : :
:i : :!:i.i:_:i:_-i:_:i:i:_:_:i:i:i:i:i

::!!::!i::i!!i::!i!i!::::i::i!:i

.- .:.. H•.._•.. ....

::::::::::::::::::::::::::::::::::::::::::::: :::

.: .: =======================.:::::::: ::

::::::::::::::::::::::::::::::::::::::::: :.::
: ::::::::::::::::::::::::::::::::::

::::::::::::::::::::::::::::::::::::::::::::::::::::

Number of Quadrilateral Elements

Figure 3.17: Planet Mesh Refinement

50



accuracy, the 300-element planet mesh was chosen for the planet

model.

In summary, the best planet model, in terms of efficiency

versus accuracy, consists of approximately 300 quadrilateral

elements in the planet and 27 gap elements at contact. Near the

contact region, the quadrilateral elements are more dense to

maintain connectivity with the densely positioned gap elements.

Similarly, the mesh of the sun fragment is sufficiently dense.

3.2.3 Optimization

The results of the finite element optimization are compared to the

closed-form optimization in Figures 3.18 and 3.19. The overall

results of both planet deflection and contact area concur.

However, the finite element solutions for total deflection are

consistently about 15% less than those of the closed-form

solution. This is approximately the same as the difference of the

global deflections in the mesh refinement of the pinned ring.

This implies that the local radial deflection 8L is indeed much

smaller than the global radial deflection _G, thereby supporting

the closed-form solution in its dismissal of the local radial

deflection _L, in Subsection 3.1.3.

In Subsection 3.1.4, the optimum size of the planets with

respect to their rolling contact surfaces were found. The resulting

flex-gear device is shown in Figure 3.20. In Chapter 4, the

addition of gear teeth will be considered.
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C HAPTER 4

DESIGN OF GEAR TEETH

In the preceding chapter, gear teeth were neglected for the

optimization of planet size. In this chapter, the addition of teeth

is considered. Adding gear teeth lessens the duration of contact

between the rolling surfaces of pitch-rolling-gears. In Section

4.1, the teeth of the planet gear are sized for a minimum loss of

rolling contact surface. Section 4.2 investigates the properties of

pitch-rolling-gears and their application to flex-gear devices.

4.1 Tooth Size

From Chapter 2, the preferred configuration of a planetary flex-

gear device has addendum gear teeth on the planet gear, and

corresponding dedendum gear teeth on the sun and ring gears.

To maintain a high current-carrying capability, the planet gear
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teeth are sized such that the duration of contact between the

rolling surfaces of the gears is maximized.

Pitch-rolling-gear teeth are shown in Figure 4.1. A contact

ratio, as defined by Equation (2.1), near 1.0 promotes a high

duration of contact between rolling surfaces by spacing the teeth

as far apart as possible. This contact ratio is depicted in Figure

4.1, where tooth 1 initiates contact with the dedendum gear at

point A, at the same time as tooth 2 ends contact at point P. A

contact ratio of 1.0 is used in the optimization of tooth size to

maximize the duration of contact between rolling contact

surfaces. The contact ratio will be slightly increased after the

optimization of tooth size to prevent the catastrophe of tooth

skipping.

Addendum tooth dimensions are shown in Figure 4.2. The

height of the tooth or the addendum is given by a. The angle of

tooth action o_ is the gear rotation through which each mating pair

of involute gearing surfaces are in contact. The distance y is the

length of the line of action and is measured along the pressure

line. The tooth thickness t, pitch p, and the arc of tooth action q

are measured along the pitch circle. The arc length i is the length

of the projection of the side of the tooth onto the pitch circle. The

thickness of the tooth at the addendum circle is called the

addendum tooth thickness ta. A minimum addendum tooth

thickness is required to limit the shear stress induced by the gear

force at point A, shown in Figure 4.1. An addendum tooth
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thickness of 0.003 inches is used for the optimization of tooth

size. The resulting shear stress is checked in Section 5.1.4.

The duration of contact _ is defined as the ratio of the

rolling surface of a planet gear to that of a toothless planet. The

length of the rolling surface of a toothless planet is equal to its

circumference. The same size planet gear has a total rolling

surface equal to its circumference minus the sum of the thickness

of its teeth. So, the duration of contact is

2:rrR
_m

_, = 2zcR - Nt N t
2rcR - 2zcR (4.1)

N

where N is the number of teeth on the planet gear. The pitch of a

gear is defined as the distance between teeth along the pitch

circle. Since the pitch circle has a radius R,

2:rrR

P= U (4.2)

Substituting Equation (4.2) into (4.1),

_. = p-t = l_t (4.3)
P P

All the tooth dimensions that are shown in Figure 4.2 are

functions of tooth height a, for a given planet radius R, contact

ratio cr, pressure angle ¢, and addendum tooth thickness ta. In
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this section, the relationships between the dimensions in Figure

4.2 are defined, and the duration of contact & is solved with

respect to tooth height a.

The tooth thickness t along the pitch circle is related to the

addendum tooth thickness t a by the shape of the involute curve

[Kimbrell, 1991]:

2R _ - inv¢
t= (2/¢° +inv,.] (4.4)

where the addendum radius R. = R + a.

Kimbrell [1991] as

R)_, = arccos(--cos ¢

The angle _a is given in

(4.5)

and invO is defined by inv¢=tanO-¢. A standard pressure angle

of _=20° will be used for the optimization of tooth Size, for the

example device.

According to Figure 4.2, the pitch p is given by

p=q+i (4.6)

where the arc length i equals half the tooth thickness when t.=0.

So, by Equation (4.4),

1t
i='_ 1,__0= R(inv_. -inv¢) (4.7)
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The arc length q is given by

q = aR (4.8)

The angle of action a is found from the triangle OAP, in Figure

4.3. Applying the law of cosines to the angle a,

y2 2 1
-- R. - R 2

a = arccos • _-_-,_
(4.9a)

where y, the length of the line of action, is found by applying the

law of cosines to the angle /3 in triangle OAP of Figure 4.3:

y2 _ (2R cos/3)y + (R 2 - 17,2,)= 0 (4.9b)

where /3= 0+ 7r[2. The possible solutions of y are given by

y= Rcos/3+2 514R2 cos2/3-4(RZ-R2,) (4.9c)

Substituting the resulting angle of action _ into Equation

(4.8), then (4.8) and (4.7) into (4.6), the pitch p is solved as a

function of gear radius R, pressure angle 0, and tooth height a.

Substituting this pitch and the tooth thickness t, from Equation

(4.4), into Equation (4.3), the duration of contact _, is solved with

respect to R, _, and a. The resulting equation for the duration of

contact is a long transcendental equation. This
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equation is plotted in Figure 4.4, for the planet gear radius R=0.7",

chosen in Chapter 3, and a standard pressure angle of ¢=20 °

For extremely small tooth heights, the duration of contact is

low because the tops of the gear teeth reduce contact. As gear

tooth height increases, this effect is diminished because the pitch

p, increasing to maintain a contact ratio of 1.0, increases the

duration of contact by Equation (4.3). The maximum duration of

contact occurs at a tooth height of approximately 0.022 inches.

By further increasing the tooth height a, tooth thickness t

increases by Equations (4.4) and (4.5), thereby decreasing the

duration of contact by Equation (4.3). The duration of contact

decreases slowly past maximum to only 7% less than maximum at

a tooth height of 0.06 inches. Accordingly, a gear tooth height of

0.025 inches is chosen. This is a reasonable size, since standard

gear teeth of 48 diametral pitch* have an addendum of 0.0208

inches [Boston Gear, 1985].

When the valleys of the dedendum gear straddle the
B

addendum teeth of the mating gear, rolling contact is hindered.

Referring to Figure 4.5a, robust electrical contact occurs before

contact reaches point A. As the planet rotates to the position

shown in Figure 4.5b, the sun gear, whose teeth are not shown,

straddles the planet tooth with poor contact at points A and B.

The resulting momentary loss of robust electrical contact is

* The diametral pitch of a gear equals its number of teeth divided by its
pitch diameter in inches. Diametral pitch alone determines the size of
standard gear teeth.
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compensated by the other planet gears in the flex-gear device.

Another result of tooth straddling is that the distance between

the centers of the sun and planet gears is decreased, momentarily

hindering conjugate action. By the right triangle B OC, shown in

Figure 4.5c, the center distance lost from the planet gear is given

by

(4.10a)

Similarly, the center distance lost from the sun gear, for the

example device, is given by

(4. lOb)

The resulting change in the center distance between the sun and

planet gears is h=hp+h_. For a tooth thickness of 0.023 inches

(corresponding to a tooth height of 0.025 inches of the example

device), h equals 0.0002 inches. Since this is much less than the

center distance between the sun and planet gears, its effect on

conjugate gear action is negligible.

All gear specifications are determined by the tooth height a

as portrayed in Figure 4.4, given the planet gear radius R,

pressure angle _, addendum tooth thickness t a, and contact ratio

cr. Using a gear tooth height of 0.025 inches, gear specifications

for the example device are calculated and shown in Table 4.1.
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Tooth size: a=0.025", t=0.023", R=0.70"

N 64 70 80

p 0.0687" 0.0628" 0.0550"

cr 1.014 1.109 1.267

_, 0.661 0.629 0.576

Table 4.1: Tooth Specifications of the Example Device

67



Here, the contact ratio cr is no longer constrained to 1.0 for two

reasons. Foremost, the number of planet gear teeth N must be

constrained to integer values. Furthermore, a slightly higher

contact ratio is sought to safeguard against the catastrophe of

tooth skipping. The tooth size is held constant (a=0.025",

t=0.023"), while the number of teeth N is varied.

A planet gear with 70 teeth is chosen because it has a

reasonable contact ratio cr of 1.1 and a duration of contact A,

within 5% of maximum. The design of the planet gear for

maximum current-carrying capability is now complete. The

optimum planet for the example device is shown in Figure 4.6.

The application of this planet gear to flex-gear devices is

considered in the following section.

4.2 Pitch-rolling-gear Flex-gear Devices

With the design of the planet gear complete, the corresponding

sun and outer ring gears must be chosen. If the sun and outer

ring gears are chosen such that the planet gear fits perfectly in

the annulus of its sun and ring gears, the planet deflection is zero

and gear meshing follows Chapter 2. However, to maintain robust

electrical contact, the rolling contact surfaces of the planet must

be compressed by the deflection 8 in the annulus of the sun and

ring gear, in accordance with Chapter 3.

Consider the flex-gear device shown in Figure 3.2, where

the lines depict rolling contact surfaces. In Chapter 2, the rolling

contact surfaces of pitch-rolling-gears were positioned exactly
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on the pitch circles for pure rolling. However, this is not always

possible, as will be shown. The pitch circle of a gear was defined

in Chapter 2 as having a radius that purely rolls on the pitch

circle of the mating gear. The contact circle of a pitch-rolling-

gear is defined as having a radius that indicates the location of

the rolling contact surfaces. The difference between the pitch

and contact circles is distinguished in Figure 4.7.

Pitch, defined previously in Equation (4.2) as the distance

between gear teeth along the pitch circle, is redefined here with

the pitch radius r, and is henceforth referred to as the gear pitch

p.

2_rr
p- (4.1 la)

N

Contact pitch Pc is defined as the distance between teeth along

the contact circle, i.e.,

27rR
p_- (4.1 lb)

N

where R denotes the contact radius. Unless otherwise stated, the

contact and pitch circles are coincident, so that their radii are

equal.

First, consider a flex-gear device with no planet gear

compression. Planet compression, required for robust electrical

contact, is produced by oversizing the contact radius of the planet

or sun gear, or undersizing that of the outer ring gear.
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Both the resizing of contact radii and the resulting planet

compression affect gear meshing in their own way. The change of

the contact radii and the compression of a pitch-rolling-gear pair

are considered separately in the following subsections.

4.2.1 Compressing a Pitch-rolling-gear

Consider the uncompressed gear 2 meshing with gear I in Figure

4.8. By design, the pitch circles coincide with the contact circles

for pure roiling. Thus, the pitch point P, at the intersection of the

pitch circles, coincides with the contact point A, at the

intersection of the contact circles.

Developed in Chapter 2, uncompressed pitch-rolling-gears

are simply a special case of standard gears. Therefore, the

equations that govern their motion are the same. Standard gear

pitch p is defined as the distance between teeth along the pitch

circle:

27rr 1
pl = _ (4.12a)

Ul

p2 =2xG (4.12b)

where N1 and N e are the number of teeth on the sun and planet

gears, respectively. By definition, the pitches at the pitch point

are equal, i.e.,

P = P_ = P2 (4.13)
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Likewise, the velocities of the two gears at that point are equal,

i.e.,

cotrl = -cozG (4.14)

And lastly, the sum of the pitch radii are confined by the center

distance C, between gears 1 and 2:

C=r I +r_ (4.15)

Equations (4.12) through (4.15) are standard gear equations,

which apply to uncompressed pitch-rolling-gears.

Now, consider compressing gear 2, as shown in Figure 4.8,

so that the contact radius changes by a distance e, from R2 to R£.

Through compression, the angle and location of the gear forces

between mating gearing surfaces change. However, since the

desired compression of the gear, as recommended in Chapter 3, is

over 100 times smaller than the gears, the pressure line, along

which the gear forces act, is assumed to remain the same

throughout compression.

Through gear compression, pure conjugate action is lost,

since involute gear meshing is designed for circular gears.

Without conjugate action, the velocity of the rolling contact

surfaces of the mating gears at the point of contact is not the

same. However, the average velocity of the gears at the contact

point must be the same, since the contact pitch of both gears
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remains the same throughout compression. The contact pitch of

gear 2 remains the same throughout compression because the

circumference of the contact circle of gear 2 does not significantly

change. This supposition is supported by Timoshenko [1936],

who used the inextensibility of thin rings to analyze their

behavior under compression.

Defining the pitch point as the point of average rolling

between meshing gears, the pitch point remains coincident with

the contact point. Then, the equations that govern compressed

pitch-rolling-gear meshing are similar to those of uncompressed

pitch-rolling-gear meshing (or standard gears). Through

compression, Equations (4.12) and (4.13) apply to compressed

gear meshing. However, Equation (4.15) becomes

C" = r, + r_ = r, + (r2 - e ) (4.16)

and Equation (4.14) becomes

=- =- (4.17)

where coi is the angular velocity of the planet gear, defined at the

contact point A (at the compressed radius r;). Elsewhere on the

planet gear, coi is only the approximate angular velocity, since

gear 2 is not a rigid body. The relationship between the angular

velocity of compressed pitch-rolling-gears, as given by Equation
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(4.17), is used in Chapter 5 in the kinematic analysis of an

example flex-gear device.

At the beginning of this section, the pitch and contact points

were said to be coincident before compression, so that no sliding

occurred on the rolling contact surfaces. By the same argument,

compression has no effect on the final location of the pitch point

with respect to the contact point, regardless of the initial locations

of the contact and pitch points. Thus, the magnitude of sliding

remains the same throughout compression.

In summary, the contact and pitch points change negligibly

by compressing pitch-roiling-gears together, whereas, the

relative angular velocity ¢9_/¢o_changes significantly. Before

applying pitch-rolling-gears to flex-gear devices, the effect of

changing the contact radius of a pitch-rolling-gear on gear

meshing must be investigated.

4.2.2 Changing the Contact Radius

According to Equation (4.11b), there are two options upon

resizing the contact radius R of a pitch-rolling-gear. One way to

resize the contact radius is to maintain the same contact pitch Pc,

forcing an increase in the number of teeth N. The second way to

resize the contact radius is to maintain the same number of teeth,

thereby forcing the contact pitch to increase. These options are

considered in this subsection by changing only one gear of a

pitch-rolling-gear pair, and allowing no compression of either
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gear. Compression was considered separately in the previous

subsection.

The first option, changing the number of teeth, maintains
I,

pure rolling on the rolling contact surfaces, because the contact

and pitch circles remain coincident. However, the contact radius

R, in Equation (4.11), can hold values only for which N is an

integer. So, changing the number of teeth on a pitch-rolling-gear

restricts the possible contact radii to discrete values.

The second option, holding the number of teeth N constant,

increases the contact pitch Pc. Increasing the contact pitch of one

gear, while holding that of the mating gear constant, produces

some sliding between the contact circles (or rolling contact

surfaces), because the contact and pitch circles of the modified

gear are no longer coincident. Consider oversizing the contact

radius of gear 2 by AC, as shown in Figure 4.9, without changing

the number of teeth. Figure 4.9a shows an ideal gear pair,

wherein the pitch point and the contact point coincide. Figure

4.9b shows the gear pair after oversizing the contact circle of gear

1, where gear 2 is allowed to move up so that no compression

occurs. Because the gear pitch circles that govern gear meshing

are no longer in contact, they no longer act as the pitch circles.

New pitch circles, called working pitch circles, pass through the

working pitch point P, as shown in Figure 4.9b. The effect of

oversizing the contact radius R is simply to increase the center

distance of the gear pair.
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Figure 4.9 Changing the Contact Radius of Pitch-rolling-gears

78



Since pitch-rolling-gears are a special form of standard

gears, the effect of their change in center distance is the same as

that of standard gears. The effect of the change in center

distance between standard gear pairs has been investigated to

understand the effect of imperfectly mounted gears, from errors

in machining and assembly. Since the number of teeth remains

the same, the relative angular velocity between the gear pair

remains the same. From this, the location of the working pitch

point P is found [Kimbrell, 1991]. The corresponding working

pitch radii rlA and r2A are given by

rlA = NI (C+AC) (4.18a)
N1 + N 2

N2 (C + AC) (4.1 8b)FRA =
N 3 + N 2

where AC is the change in center distance C between gears.

working pressure angle is given by Kimbrell [1991] as

The

\r2A rlA )
(4.19)

Equations (4.18) and (4.19) are the effect of the change of contact

radius of a pitch-rolling-gear on gear meshing and are used in

Section 5.1 to solve the kinematics of an example flex-gear

device.
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Gear meshing enforces pure rolling at the working pitch

point P. This results in sliding at the contact point A between the

rolling contact surfaces. This sliding is defined by the relative

linear velocity of the rolling contact surfaces at point A. This

relative velocity, referred to as sliding velocity, is given by

(4.20)

m m

where VA_ and V,t2 are, respectively, the velocity vectors of point

A on gears 1 and 2. The angular velocity vectors o9_ and co--2 and

the contact radius vectors R_ and R_ are defined in Figure 4.10. A

clockwise positive sign convention is adopted for angular velocity.

Applying the right hand rule to the cross products in Equation

(4.20), the linear velocities 7,_, and 7,_2 are positive rightward, as

shown in Figure 4.10. Sliding at the contact point A is the result

of the mismatch of contact pitches of mating pitch-rolling-gears.

The mechanical power loss from the sliding between rolling

contact surfaces is discussed in Chapter 5.

In summary, the contact radius of a pitch-rolling-gear can

be resized by either changing the number of teeth or allowing the

contact pitch to vary. Changing the number of teeth maintains

pure rolling between the rolling contact surfaces, while allowing

the variance of contact pitch produces sliding. Both of these

options will be considered in the application of pitch-rolling-gears

to flex-gear devices in the following subsection.
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4.2.3 Flex-gear Devices

Consider applying pitch-rolling-gears to the planetary flex-gear

device shown in Figure 3.2. The annulus dimension D is given by

D = R3 - R1 (4.21)

The planet deflection 8 and contact radius R2 (previously denoted

by R) were determined by the optimization in Chapter 3. These

parameters require that the annulus dimension be

D= 2R2-_ (4.22)

First, consider an uncompressed flex-gear device, whose

planets fit perfectly in the annulus of the sun and ring gears.

Then, the planet deflection 8 equals zero, and by Equation (4.22),

the planet diameter 2R z equals the annulus dimension D. If the

contact circles coincide with the pitch circles, the pitch radii r i

equal the contact radii Ri, and

27rR 1 27rR 2 2zcR 3
p=p_- =_= (4.23)

N1 N2 N3

where subscripts 1, 2, and 3 indicate parameters of the sun,

planet, and outer ring gear, respectively.

Consider an uncompressed flex-gear device with the same

parameters as the example device (except _5=0). A gear pitch

p=0.0628" is recommended in Section 4.1, and the planet contact
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radius R2=0.70" is recommended in Chapter 3. The outer ring

radius R 3 is given as approximately 3 inches in Section 1.3. Using

these values in Equations (4.23), the radii R 1 and R 3 and the

number of teeth N 1 and N 3 are solved, while constraining N 1 and

N 3 to integer values and R 3 close to 3 inches. The result is:

R1=1.6", R2=0.70", R3=3.0", N1=160, N2=70, and N3=300.

Now, consider compressing the planet gear by an amount 8,

as recommended in Chapter 3. This planet deflection can be

produced by slightly changing the contact radii Ri of the

uncompressed flex-gear device. The contact radii of the planet or

sun gears can be increased, or that of the outer ring gear can be

decreased. As explained in Subsection 4.2.2, the contact radius of

a pitch-rolling-gear can be changed, either by changing the

number of teeth or by allowing the contact pitch to vary.

Ideally, the contact pitches of the sun, planet, and outer

ring gears are the same for any desired planet deflection, so that

zero sliding occurs between the rolling contact surfaces.

However, by Equations (4.21) through (4.23), it is impossible to

maintain the same contact pitches and the desired deflection 8

without changing the number of teeth. So to attain the same

contact pitches for the gears of a compressed planet device,

consider changing the number of teeth on the gears of an

uncompressed flex-gear device.

Changing the number of teeth of a pitch-rolling-gear while

maintaining a constant contact pitch, changes the contact radius

incrementally, as mentioned in Subsection 4.2.2. Therefore, it is
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unlikely that the number of teeth N 1, N 2, and N 3 can be found to

exactly yield the desired planet deflection S. Instead, possible

planet deflections are sought by changing the number of teeth,

N 1, N 2, and N 3. Combining Equations (4.21) and (4.22), the planet

deflection is given by

8=2R 2-D=2R 2-(R_-R1) (4.24)

Hence, the smallest possible deflection 8 occurs for the smallest

change in the sun or ring radii or planet diameter. By Equation

(4.23), the contact radius of any gear changes by the same

increment for the same change in the number of teeth. By adding

a tooth while maintaining a constant contact pitch, the contact

radius of any gear with a pitch of p=0.0628 inches, increases by

0.010 inches. The change in radius of the planet has twice the

effect on the deflection 8, according to Equation (4.24). Therefore,

the smallest planet deflection is realized by adding a tooth to the

sun gear or removing one from the outer ring gear. The resulting

planet deflection 8 of the example device equals 0.010 inches, by

Equation (4.24).

The resulting flex-gear device is free from sliding between

the rolling contact surfaces, since the contact pitches of the gears

match. However, the planet deflection of 0.010 inches is greater

than the 0.004 inches suggested in Chapter 3, for the example

device. The corresponding compressive force W, by Equation

(3.5), is 7.25 pounds-force, which is 4.25 pounds-force higher
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than suggested in Chapter 3. Since this compressive force is

excessively high for the example device, at least two options

remain. One is to lower the gear pitch given in Section 4.1. This

decreases the effect of changing the number of teeth on the

planet deflection 8. The cost of lowering the gear pitch is

lowering the duration of contact _, as seen from Equation (4.3).

The second option is to design a device that accepts a small

amount of sliding between its rolling contact surfaces. A small

amount of sliding between rolling contact surfaces may cause

only a negligible amount of wear and debris. However, sliding

causes frictional forces that contribute to mechanical power loss

in the device.

Both options are specified in Table 4.2, with the

uncompressed device. With the recommended deflection and

compressive force, the device in the second column accepts some

sliding between its rolling contact surfaces, and is therefore

referred to as a sliding device. Accepting a higher deflection and

compressive force, the example in the third column produces

pure rolling on its rolling contact surfaces, and is therefore

referred to as a rolling device. The planet deflection of both

devices is produced by oversizing the contact radius of the sun

gear of the uncompressed device. The sliding device oversizes

the sun gear contact radius of the uncompressed device, while

maintaining the same number of teeth, allowing the contact pitch

of the sun gear to change. The rolling device
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pressure angle ¢p 20 °

tooth height a 0.025"

tooth thickness t 0.023"

gear pitch p 0.0628"

Uncompressed Sliding

devic¢ device

Sun gear:

number of teeth N 1 160 160

gear pitch radius r 1 1.600" 1.600"

contact radius R 1 1.600" 1.604"

contact pitch Pc1 0.0628" 0.0630"

Planet gear:

number of teeth N 1 70 70

gear pitch radius r 2 0.700" 0.700"

contact radius R 2 0.700" 0.700"

contact pitch Pc2 0.0628" 0.0628"

Outer ring gear:

number of teeth N1 300 3 00

gear pitch radius r 3 3.000" 3.000"

contact radius R 3 3.000" 3.000"

contact pitch Pc3 0.0628" 0.0628"

planet deflection 8 0

compressive force W 0

0.004"

3 lbf

Rolling
device

161

1.610"

1.610"

0.0628"

70

0.700"

0.700"

0.0628"

300

3.000"

3.000"

0.0628"

Table 4.2: Specifications of Example Flex-gear Devices
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oversizes the sun gear contact radius of the uncompressed device,

while adding one gear tooth to maintain the same sun gear

contact pitch.

For the example device designed throughout this thesis, the

preferred configuration from Table 4.2 is the sliding device, since

it offers the recommended compressive force of 3 pounds-force.

The sliding device will be analyzed for average frictional torque

and maximum gear stress in Chapter 5.

Pitch-rolling-gears, discussed in this subsection, are difficult

to apply to a planetary type flex-gear device because of the

constraint of Equation (4.21). A rack and pinion type device, as

shown in Figure 4.11, does not pose this difficulty because

Equation (4.21) does not apply. Thus, the deflection 8 of the

pinion does not depend on the contact pitch. While a planetary

type device applies to rotary joints, a pinion type device applies

to prismatic joints.
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Flexible pinion

Bottom rack

Figure 4.11" Rack and Pinion Type Flex-gear Device
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C HAPTER 5

ANALYSIS OF A FLEX-GEAR DEVICE

The kinematics and kinetics of the sliding device, which is

specified in Table 4.2, are presented in Sections 5.1 and 5.2. In

these sections, the mechanical power loss from sliding between

the rolling contact surfaces is discussed. Gear stress is discussed

in Section 5.3.

5.1 Kinematics

Figure 5.1 shows a planetary flex-gear device. The fictitious arm,

denoted by the letter a, will be used to find the angular velocities

of the device. The contact point between the planet and outer

ring gears is denoted by the letter B to distinguish it from the

contact point A between the planet and sun gears. Accordingly,

the parameters involved with planet and sun gear meshing are

denoted by the subscript A. Similarly, all parameters involved
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Figure 5.1: Angular Velocities of a Planetary Flex-gear Device
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lqgure 5.2: Creating the Sliding Device in Two Steps
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with planet and outer ring gear meshing are denoted by the

subscript B.

As stated in Chapter 4, the sliding device is the same as the

uncompressed device with an oversized sun contact circle and,

therefore, a compressed planet gear. Oversizing the contact circle

of the sun gear and compressing the planet gear are considered in

two separate steps in this section to determine the kinematics of

the sliding device.

As shown in Figure 5.2a, the first step increases the contact

radius of the sun gear by a distance AC=O.O04", from r 1 toR 1.

Ignoring planet gear compression in this step, the planet is

pushed up by the distance AC. The effect of changing the contact

radius of the sun gear on sun and planet gear meshing is

presented in Subsection 4.2.2. The working pitch radii,

corresponding to the working pitch point PA between the planet

and sun gears, are given by Equation (4.18) as

rlA w

160

160 + 70
(2.3 + 0.004) = 1.6028"

70
f2a --

160+ 70
(2.3+0.004)= 0.7012"

And, the working pressure angle Ca, corresponding to the working

pitch point PA, is given by Equation (4.19) as

Ca = arcc°s(0_O cos(20°)l = 20.27°



The working pitch radii, corresponding to the working pitch

point Pz_, between the planet and outer ring gears, are the same

as the gear pitch radii, since the working pitch point P B is

coincident with the contact point B:

rzB = rz (5.1 a)

r3n = r3 (5.1 b)

Similarly, the working pressure angle Cz_, corresponding to the

working pitch point PB, is the same as the pressure angle 4_=20 °

In the second step, shown in Figure 5.2b, the planet is

compressed by the outer ring gear (not shown) at point B, by a

distance AC. This step puts point B back to its original position,

before the first step. By Subsection 4.2.1, the locations of the

working pitch points P,4 and PB do not change through gear

compression, relative to contact points A and B, respectively.

However, the contact and working pitch radii of the planet gear

are compressed. The compressed radii, denoted by primes, are

less than the uncompressed radii by a distance e. Hence, the

compressed contact and working pitch circle radii of the planet,

corresponding to meshing with the sun gear, are given by

R_ = R2-e (5.1c)

rza = r2a - e (5.1 d)
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where e is the distance that the center of the planet moves by

compression. Since point B compresses the planet by AC, the

distance e is half of AC. The compressed contact and working

pitch circle radii of the planet, corresponding to meshing with the

outer ring gear, are given by

R_ = R2-E

F2B --" !"2B -- _ --" r2 -

(5.1e)

(5.1f)

The compressed working pitch radii r_,t and r_B of the planet gear

determine the relative angular velocities of the gears in the flex-

gear device. All the kinematic parameters of the sliding device

are presented in Table 5.1.

The device, shown in Figure 5.1, can be operated by

rotating the sun gear (1) with respect to the outer ring gear (3) or

vice versa. In a robot joint, it is assumed that the sun gear is

rotating with respect to the outer ring gear. To derive the

angular velocities of the device relative to the outer ring, the

angular velocities relative to the fictitious arm are found. In the

following, the notation c0,j denotes the angular velocity of body i

with respect to body j.

By Equation (4.17), the angular velocity of the planet gear

with respect to the fictitious arm is

°J_/=r_A (5.2a)(.02/a _" •

F2A
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Sun

Planet

Outer

Parameter

gear:

rlA

_A

Equation used Value

4.18a 1.6028"

4.19 20.27 °

gear:

r2A 4.18b 0.7012"

r2B 5.1a 0.7000"

r'2A 5.1d 0.6992"

r'2B 5.1f 0.6980"

R' 2 5.1c 0.6980"

ring gear:

r3 B 5.1 b 3.0000"

4.19 20 °

Table 5.1: Kinematic Parameters of the Sliding Device
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In accordance with Subsection 4.2.1, the change in the angular

velocity throughout the planet gear from deformation is

neglected, so that the angular velocity is constant throughout the

planet gear. By the definition of angular velocity, the linear

velocity of the pitch point PB between the planet and outer ring

gears, with respect to the fictitious arm, is given by

• 091_rla.r,
V2n = 602/, r2n = r2a 2a

(5.2b)

Since the linear velocity of PB is the same on both the planet and

outer ring gears, the angular velocity of the outer ring gear, with

respect to the fictitious arm, is

V2B O)lla rla r2B

(_1)31 a = _ --- , (5.2c)
r3 F2A r 3

Subtracting w3/, from o_1/o and oh/°, the angular velocities of

the sun and planet gears with respect to the ring are obtained:

0)1/3 = 0)1/° -- 0)3/o = --0)1/°I1 + _)r2ar3 )
(5.2d)

0)2/3 ---- 0,)21 a --

I'l_ rl._.A_A% rla r2B
• #

= 0)1/3 r2A r2a r3

$

r2a r 3

(5.2e)
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The average sliding velocity between the rolling contact

surfaces of the planet and outer ring gears is zero, since the

contact and working pitch circles coincide with one another. The

average sliding velocity between the rolling contact surfaces of

the planet and sun gears, given by Equation (4.20), is

,w, =

k r2Ar3 ) r2ar3

°3 I rA !D

I 11+ r_ar2n rZA
t

r2a r3

(5.3)

Sliding between the rolling contact surfaces at the contact

point A produces a frictional force that resists the motion of the

device. Frictional torque is defined as the torque that the

frictional force exerts on the sun gear. Frictional torque is

calculated at the sun gear because the sun gear is the perceived

input of the device. By energy equivalence, the mechanical

power loss from sliding between the rolling contact surfaces is

given by

mechanical power loss = T.w_/3 = fa AVa (5.4a)

where T is the frictional torque at the sun gear, and fA is the

sliding friction force between the sun and planet gears at the

contact point A. The frictional torque is solved from Equation
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(5.4a) and denoted by Tnrg , to indicate that it has been calculated

by energy equivalence:

T,.,_= fA AV'_ (5.4b)
0)1/3

The friction force fA is solved in the following subsection.

5.2 Kinetics

To investigate the kinetics of the sliding flex-gear device, the free

body diagrams of the sun and planet gears are constructed in

Figure 5.3. All the dimensions, therein, are taken from Figure

5.2b. Inertial terms are neglected.

The sliding friction force fA, at the contact point A, develops

from sliding between the rolling contact surfaces. Substituting

the values of Table 5.1 into Equation (5.3), yields

_1 6040 0.6980.1.60281
3/"

AVA= /| 1+0"6980"1"6028 J= 0.00257 6o_/3

Unsurprisingly, the magnitude and direction of the sliding

velocity AV A is directly dependent on the magnitude and

direction of the angular velocity of the sun gear, col/3.

In accordance with the sign convention defined in Figure

4.10, a positive (clockwise) sun gear rotation is adopted in Figure

5.3. This results in a positive (rightward) sliding velocity AV a at
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Figure 5.3: Free Body Diagram of Sliding Device
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the contact point A, producing an opposite (leftward) frictional

force fA on the sun. An equal and opposite force occurs on the

planet gear at the same point, A. Summing the moments on the

planet gear about B indicates the direction of the gear force F A.

This gear force acts at the working pressure angle ¢A, given in

Table 5.1. The frictional force fA and gear force F a apply a torque

to the planet gear that can only be balanced by the frictional and

gear forces at point B.

Summing the moments on the planet gear about point A

indicates the directions of the frictional and gear forces through

point B, as shown in Figure 5.3. Both the gear force F B and the

frictional force fB can act simultaneously. However, the gear force

F 8 acts only when the gearing surfaces between the planet and

outer ring gears are in contact. Assuming some mechanical

backlash between the gearing surfaces of the device, the gearing

surfaces between the planet and outer ring gears do not touch,

since pure rolling occurs at point B. For this reason, only the

static frictional force fo acts at point B. If the maximum frictional

force determined by the coefficient of friction is, however, not

enough to keep the planet in equilibrium, the gear force F B will

also act.

As shown in Figure 5.3, the normal forces N a and N B must

be compressive due to the nature of surface contact. Finally, the

reaction forces R z and Ry constrain the center of the sun gear, and

the input torque T assumes a positive or clockwise direction.
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Physically, because the contact circle of the sun gear is

greater than its working pitch circle, torque is transmitted from

the sun to the planet via friction at the contact point A. To

prevent the planet from running out of position, the mating gear

teeth produce a force opposite to the frictional force at PA, as

shown in Figure 5.3. The mechanics of this device are

remarkably different from that of a standard gear device.

The equilibrium solution of a compressed planet device is

approximate, because the change of the angle and location of the

gear forces through planet compression are not accounted for, as

justified in Subsection 4.2.1. Ignoring the gear force FB, there are

8 unknowns T, R x, Ry, FA, NA, NB, fA, and ./8 in Figure 5.3. To solve

for these unknowns, two equations, in addition to the 3 equations

of equilibrium (in the plane of the device) for each gear, must be

used. The first equation is supplied by the dry friction model:

A = va (5.5)

where # is the coefficient of friction. For the example device,

_=0.5 is conservatively assumed for non-lubricated operation.

The second equation, coming from the compliance of the planet

gear, is Equation (3.5). In that equation, the compressive force W

represents the sum of the vertical components of the forces

between mating gears, i.e.,

W=N a +FasinOa (5.6)
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With Equations (5.5) and (5.6), the 8 unknowns can be

solved in terms of the known compressive force W. The torque

solved by equilibrium is denoted by Teq l and compared to the

torque solved by energy equivalence Tnrg , from the previous

subsection. Summing the moments of the planet about B, yields

2A e; = _'a(R;+ r;a)cosCa (5.7)

Summing the moments of the sun about O, yields

r,,, = A el - Fan, cost, (5.8)

Combining equations (5.5) through (5.8), yields

2uWR;

Fa = 2U R;sin Ca +(R_ + r;a)cosCa (5.9a)

N a = W- F a sin Ca (5.9b)

fa =/.t (W - FAsin CA) (5.9c)

and,

T,_, =l.t(W-FasinCa)(r _+AC)-Far_acosCa (5.9d)
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Substituting the frictional force fA from Equation (5.9c) into

Equation (5.4b), the frictional torque by energy equivalence Tnrg

is solved. Tnrg is equivalent to Teq l, which is given by Equation

(5.9d). For the kinematic values given in Table 5.2, the frictional

torque T is

T = T,..g = T,q t = 0.0033 in- lbf (5.10)

Summing the forces on the planet in the horizontal

direction, yields

fB = fa-p, cos A (5.11)

Summing the forces on the planet in the vertical direction, yields

NB=W (5.12)

The summation of forces on the sun gear yields the reaction

forces R x and Ry, whose solutions are not presented in this thesis.

Values of the equilibrium solution of the sliding flex-gear

device are listed in Table 5.2. Notice that the normal force NA, at

the rolling contact between the planet and the sun gear, is

considerably less than the compressive force W. This somewhat

lessens the contact area of the model in Chapter 3. The frictional

force fB is extremely small, because it acts only to balance the
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Force. Equation VaI0e

W given 3.0000 Ibf

FA 5.9a 1.3488 lbf

NA 5.9b 2.5327 lbf

fA 5.9C 1.2663 lbf

T 5.10 0.0033 in-lbf

fB 5.11 0.0011 lbf

NB 5.12 3.0000 lbf

Table 5.2: Equilibrium Solution of the Sliding Device
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small moment from gear meshing at point A, which is relatively

far away.

Additional mechanical power is lost from sliding between

the involute gearing surfaces. Sliding between the gearing

surfaces of pitch-rolling-gears is similar to that of standard gears.

By energy equivalence,

mechanical power loss = Ta ¢.ol/3= (.1",I/',)a + (f,V,) n (5.13)

where T G is the frictional torque contributed from sliding

between the gearing surfaces, V r is the relative velocity of mating

gearing surfaces at their instantaneous points of contact, and ft is

the corresponding frictional force between mating gear teeth.

Frictional torque from gearing surface sliding is not calculated in

this thesis.

5.3 Stress in the Sliding Device

A flexible planet gear is subjected to more stress than both the

solid sun and outer ring gears. In addition to the local

deformation from rolling surface contact that all the gears

undergo, the planet is subjected to global deformation, due to

compression. Furthermore, the slim addendum teeth of the

addendum planet gear are subjected to more stress, from tooth

loading, than the thicker dedendum teeth of the sun and outer

ring gears. The local, global, and tooth stresses of the planet are

investigated in this section.
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The local deformation of the planet from rolling surface

contact was modeled by the Hertz contact theory in Section 3.1.3.

The coordinates for the contact regions of the planet with both

the sun and outer ring gears are shown in Figure 5.4. By the

Hertz contact theory, which neglects friction, the stress of a

contact region is highest along the z-axis, where the normal

stresses are given by Sidebottom and Boresi [1970] as

bill + (bl 2 -b] 2

 514a,

cry=-_-_II1 +/b] 2 -b]
(5.14b)

b
O'Z _--"

2
(5.14c)

where v 2 is Poisson's ratio of the planet gear material. For the

rolling surface contact between the planet and the sun gear,

b=_ _._- (5.15a)

2q 2p

(5.15b)

106



For the rolling surface contact between the planet and the outer

ring gear,

b=_ _ (5.16a)

1 1
t

2p 2G

(5.16b)

The highest state of normal stress, for any contact region, occurs

at the contact point (z=O). For the example sliding device, the

highest stress state occurs between the planet and the outer ring

gears. This stress state has a maximum normal stress of 17,000

psi and an octahedral stress of 15,000 psi.

As mentioned in Section 3.1, the Hertz contact theory was

derived for two solid semi-infinite bodies in contact. Hence, any

additional stress, from the global deformation of the planet, must

be accounted for separately.

Global deformation of the planet is modeled in Section 3.1.2

by a thin ring compressed by two diametrically opposing point

loads. Young [1989] presents the resulting bending moment,

hoop load, and shear force, defined in Figure 5.5. The internal

bending moment is given by

107



Ea/ 1 sing]  517a,M= WR 1 12R2 2

The hoop or normal load is given by

W
H =---sinx (5 17b)

2

Finally, the shear force is given by

W
V =-kcosx (5.17c)

2

Since the radius R of the planet gear is much greater than

the thickness c, the stress in the planet can be determined from

the bending, hoop, and shear loads, by beam theory. The bending

stress is given by

My
o'_ =--_ (5.18)

where 1 is the area moment of inertia, given in Section 3.1.2 as

I=dc3/12. The hoop stress is

H
o-_=-- (5.19)

A

where A is the cross sectional area A=dc. The total x-normal

stress is the sum of the bending and hoop stresses:
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Planet gear

Planet gear

Sun gear

(a) Contact between

Sun and Planet Gears

(b) Contact between

Outer Ring and Planet Gears

Figure 5.4: Coordinates Local to Contact
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Figure 5.5: Definition of Bending, Hoop, and Shear
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o-== o-_+ o-h (5.20)

For the example sliding device, the maximum x-normal stress

occurs at x=_r/2 and is equal to 12,000 psi.

In accordance with Young [1989], the radial or y-normal

stress for the example flex-gear device can be ignored. The shear

stress x of the planet gear is approximated by the parabolic

distribution of a straight beam, whose maximum shear stress

occurs at the center of the beam, and is given by

3V

_"_ 2A (5.21)

For the example sliding device, the maximum shear stress occurs

at x=O, Jr and is equal to 150 psi.

Finally, tooth stress is investigated. A loaded tooth of the

planet gear is shown in Figure 5.6. Friction, arising from the gear

force F, is neglected in the calculation of gear tooth stress. The

angle, at which the gear force F acts with respect to the tooth, is

the pressure angle _a at the top of the tooth, and is given by

[Kimbrell, 1991] as

+.-arccos¢  os+l
t,Ko )

(5.22)

110



Y
m_

F

_,_0a
a

Figure 5.6: Planet Tooth _g
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This pressure angle should not be confused with the working

pressure angle Ca used in the study of gear meshing. For the

example device, the pressure angle Ct at the top of the tooth is

24.9 °"

Rather than finding the entire stress field, critical stresses,

at specific points, are checked. Stress at point C, as shown in

Figure 5.6 arises from tooth bending, compression, and shear.

The compressive stress at point C is

Fsin 4,
°'c = td (5.23a)

where d is the depth of the tooth into the page (the axial

thickness of the gear). Approximating the tooth as a beam, the

bending stress at point C is

ere =Mr/2 (5.23b)
I

where the moment of inertia I=d:/12, and the bending moment

M=aFcos(D,. Finally, the shear stress at point C is given by

F cos 4,
1:- (5.23c)

td

In the sliding device, the higher gear force occurs between the

sun and planet gears. For this gear force, FA, the stress state at

point C has an octahedral stress of only 10,000 psi.
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'lb

The shear stress at the top of the addendum tooth is

F cos ¢,
_'° = (5.24)

t° d

For the gear force FA, given in Table 5.2, and an addendum tooth

thickness of ta=O.O03", from Chapter 4, the shear stress

"t:o= 2500psi.

In summary, the stresses of the sliding device are low. The

stress due to rolling surface contact is highest, but still well

within the range of strengths offered by beryllium-copper alloys.
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CHAPTER 6

CONCLUDING REMARKS

In conclusion, flex-gears offer a strong alternative of transferring

electricity across continuously rotating joints. The flex-gear

devices that are developed in this thesis are expected to transfer

more electricity than roll rings, while incurring less wear than

brushes. Flex-gears may serve as a standard in space

applications in the near future.

6.1 Summary

In this thesis a new class of gears, called pitch-rolling-gears, is

developed for use in flex-gear devices. These gears are designed

to transfer electrical power, whereas standard gears are designed

to transfer mechanical power. A pitch-rolling-gear uses involute

gearing surfaces, similar to those of a standard gear, to maintain
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its position with respect to its mating gear. Additionally, pitch-

rolling-gears employ rolling contact surfaces, similar to those of

roll-rings to transfer electricity. Pitch-rolling-gears, used as the

flexible planet gears in a planetary gear device, maintain their

position in the annulus of the sun and outer ring gears. In this

way, multiple planet gears can be used to substantially increase

the current carrying capability of the device.

The capability of the gearing surfaces to maintain gear

position is independent of the performance of the rolling contact

surfaces to conduct electricity. Consequently, the gearing and

rolling contact surfaces are separately designed to maximize the

current carrying capability of the device.

Current carrying capability is defined by the contact area

between the rolling contact surfaces of mating pitch-rolling-gears.

Two theoretical models are developed to predict this contact area

as a function of planet radius. The closed-form and finite

element models are in close agreement. From the closed-form

model, the optimum radius of the planet gear is chosen for the

example flex-gear device.

The gearing surfaces are designed to maximize the duration

of contact between mating rolling contact surfaces. The duration

of contact available on an addendum planet gear is found through

geometry. For the planet of the example device, whose radius

was determined from the maximization of current carrying

capability, gear tooth size is chosen to maximize the available

duration of contact. Corresponding sun and outer ring gears are
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specified to produce the planet compression that is specified in

Chapter 3.

To find the friction torque and gear stress of any pitch-

rolling-gear device, the kinematics and kinetics of pitch-rolling-

gears are analyzed in Chapter 4. The effects of changing the

contact and pitch radii of a pitch-rolling-gear on gear meshing are

determined. The effect of compressing a pitch-rolling-gear on

gear meshing is discussed, and its effect on kinetics is neglected.

The frictional torque and gear stress, for the example device

specified in Chapter 4, are shown in Chapter 5 to be well within

acceptable limits.

6.2 Recommendations for Future Work

Throughout the optimization of the flexible planet in the example

device, three significant assumptions are made.

Foremost, the basis of the optimization of planet gear size is

the approximation that Hertz contact area predicts the area

through which electricity flows. The area for electrical flow may

actually be less than the Hertz area, especially for extremely thin

rings, whose contact pressure is thought to be less than solid

cylinders in contact. The flex-gear device can be further

optimized through a better understanding of electrical contact.

An experimental study of the current carrying capability of thin

rings is recommended.

The second assumption is the value of the minimum planet

thickness required to limit planet tooth deflection. To improve
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the current carrying capability of the example flex-gear device, a

smaller planet thickness can be used. For this reason, the search

for the dependence of tooth deflection on planet thickness is

suggested.

Finally, a standard gear pressure angle of 20" is adopted in

Chapter 4 for the example flex-gear device. A higher pressure

angle would increase the duration of contact between the rolling

contact surfaces and decrease gear forces, thereby decreasing

frictional torque. The benefit of increasing the pressure angle

should be weighed against the cost of using a non-standard

pressure angle.

Perhaps, the most profound improvement in current

carrying capability of flex-gears can be made by finding a more

flexible conductive material. A flexible material (one with a low

modulus of elasticity) would allow the use of smaller planet gears

to conduct more electricity, as indicated by the optimization of

planet size in Chapter 3.

For the kinematic and kinetic analyses of pitch-rolling-

gears, the pressure line of compressed pitch-rolling-gears is

approximated by the pressure line of uncompressed gears. For

pitch-rolling-gear devices, especially with a larger compression

than the example devices discussed in this thesis, the actual

pressure line may significantly change angle and shape. The

pressure line (or curve) between flexible pitch-rolling-gears can

theoretically be found while considering the global deformation

of the gears. Global deformation of a thin ring (or hollow gear),
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subjected to a concentrated point load, is given by Timoshenko

[1936].

Axial confinement of the planet gears in the annulus of the

sun and outer ring gears is not considered in this work. It is

assumed in Chapter 2 that the planet gears are axially confined

by smooth and hard insulating material, such as glass or ceramic.

Alternatively, concave and convex rolling contact surfaces can be

employed for axial confinement. This axial confinement scheme

is used in roll-rings [Porter, 1985].
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